If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+18x+5=0
a = 12; b = 18; c = +5;
Δ = b2-4ac
Δ = 182-4·12·5
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{21}}{2*12}=\frac{-18-2\sqrt{21}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{21}}{2*12}=\frac{-18+2\sqrt{21}}{24} $
| -7+u/4=17 | | |7-4x|-4=14 | | 8x+2x-14=6 | | 7-4x-4=14 | | 2+5x=9+5x | | y=81.15(1.013)^100 | | y=81.15(1.013)^60 | | 10(u+1)=3(4-3) | | 39-5x=17+6x | | y=81.15(1.013)^80 | | 9x^2−10x=0 | | 6^x+12=180 | | c.18.6=889.638 | | 8x+11=2x-19 | | y=81.15(1.013)^40 | | 39x5=17+6x | | 6(+-5)=4(t+3) | | (1-4y²)=0 | | 2/3x-41/2=4x+10 | | 4q+3q=3q^2-4q+18 | | -5+7x=58 | | 39X5x=17+6x | | 5x-39÷2=3 | | 2(4b+1)/3=14 | | y=81.15(1.013)^20 | | a-8=12,2a+13=-158a=204a-5=-15 | | 4x^2+15x-3668=0 | | 500=x²-14x+485 | | y=81.15(1.013)^0 | | 2/3x-4/1/2=4x+10 | | t+1.25+7=43.25 | | -(-3x+6)=16 |